
Extended Abstract

Motivation Narratives like earnings calls, Federal Reserve announcements, and economic reports
impact markets strongly but most trading algorithms have no access to these real-time verbal com-
munications humans traders use to make trading decisions. This provides a unique opportunity for
reinforcement learning (RL) agents to react to financial language before it is acted upon. We seek to
address this limitation by creating a transformer-based RL agent that ingests economic transcripts
line by line in conjunction with high-frequency market activity to make sequential trading decisions.
Our RL agent empowers agents of reaction through increasingly changing narratives and sentiment,
and represents a scalable solution for parsing the complex increase in financial discourse beyond
human access.

Method To address this gap, we trained an RL agent to make sequential trade decisions (Buy,
Hold, or Sell) based on real-time financial chat and high-frequency stock data. We employed pre-
trained transformers such as BERT, FinBERT, Longformer, or LongT5 to embed every sentence. We
concatenated them with second-by-second stock prices, recent trading activity, and a rolling window
of discussion context to construct the state representation for the agent. We compared three policy
architectures: a baseline multilayer perceptron (MLP), a gated recurrent unit (GRU) network, and
a transformer encoder with causal attention. These were each combined with a value network for
advantage estimation. The agent was trained with the Proximal Policy Optimization (PPO) algorithm
with discount factor = 0.99, GAE lambda = 0.95, learning rate 3 × 10−4, batch size = 64, and
10 epochs per policy update. Both the policy and value networks were two-layer MLPs with 64
hidden units and ReLU activations, unless the policy architecture was recurrent or transformer-based
explicitly. As a baseline, we employed a static FinBERT sentiment classifier, translating its sentiment
outputs into discrete trade actions for apples-to-apples comparison with the RL agent.

Implementation Our dataset consisted of the earnings calls of twenty S&P 500 technology com-
panies from the 4 most recent quarters. We used OpenAI Whisper to transcribe the audio files and
generate timestamps for each sentence. This allowed us to align the transcripts with second-by-second
market data. The stock data was sourced using the Databento API. Each training episode consisted of
1 full earnings call. The RL agent was placed in a custom trading environment that simulated live
discourse and the real-time market response. We evaluated four transformer architectures, BERT,
FinBERT, Longformer, and LongT5, for embedding quality and the downstream policy performance.

Results We evaluated RL agents using different transformer embeddings—BERT, FinBERT, Long-
former, and LongT5—on 80 S&P 500 earnings calls. The static FinBERT sentiment classifier
outperformed all RL models with an average return of 0%, an average Sharpe ratio of 0.58, and
average drawdown (-0.62%). Among RL agents, FinBERT-based embeddings yielded the most stable
results: -0.01% average return and -0.54% drawdown. BERT, Longformer, and LongT5 demonstrated
higher volatility, with drawdowns as low as -3.24%. However, Longformer and LongT5 achieved
the highest max returns, reaching 4.62% and 4.6%, respectively. GRU policies introduced greater
risk but showed potential with episodic gains, while the transformer policy with causal attention
failed to train effectively. These results reveal a tradeoff: transformer-based RL agents can detect
rare, profitable events, but at the cost of stability and consistent performance.

Discussion and Conclusion Our results demonstrate that although transformer-based RL agents
such as Longformer, LongT5, or otherwise, have potential to realize high return trading opportunities
using financial text occasionally, the agents experience instability with large drawdowns and non-
consistent outcomes. In comparison, static FinBERT sentiment classifier performed best with respect
to average returns and risk every time. At the same time, GRU-based policies learned to engage
temporal dependencies for event-related profit generation, but they were unstable. The MLPs resulted
in stable but less responsive behavior. The transformer-based policies with causal attention failed to
train, which suggests that transformer-based RL agents have challenges learning within sparse, noisy
ecological settings. There is a need for improved temporal modeling, more stable training approaches
and further developed reward functions. Our research serves as a first step toward developing a
real-time language-aware trading system that moves beyond traditional price action methods.



Sequential Reinforcement Learning on Economic
Discourse for Real-Time

Sarang Goel
Department of Computer Science

Stanford University
sarang28@stanford.edu

Chirag Maheshwari
Department of Computer Science

Stanford University
cmaheshwari@stanford.edu

Ekansh Mittal
Department of Computer Science

Stanford University
ekanshm@stanford.edu

Abstract

We devise a new Reinforcement Learning (RL) agent that acts in real time to process
financial narratives like earning calls, one sentence at a time together with live
high-frequency market data. In contrast to past work that simplifies discourse using
static sentiment labels, our agent uses family of transformer embeddings (BERT,
FinBERT, Longformer, LongT5) to process raw textual transcripts and then decides
to buy/hold/sell in a custom RL environment. We compare different RL policies
(MLP, GRU, transformer encoders) for our RL model, using static FinBERT
sentiment classifier as a baseline. While the static baseline outperforms all of the
RL agents regarding average return and risk traits, all four transformer-based RL
agents occasionally do capture high returns. However, this higher return comes
with higher volatility and instability. In general, our findings indicate promise but
important limitations for discourse-aware trading systems, particularly in effectively
modeling time and reward function stability. This work is a step towards the goal
of enabling autonomous agents to consume economic narratives and act in real-
time, indicating exciting possibilities in financial AI beyond traditional numerical
strategies.

1 Introduction

Financial markets have become more reliant on real-time narrative information (such as earnings
calls, speeches by central banks, announcements, and press conferences) to price assets and judge
risk. While traditional algorithmic trading systems are built around structured, time-series data such
as historical prices or technical indicators, they have very limited capabilities for unstructured textual
data, especially live speech text representing the changing, near-continuous conversations of traders
that often foreshadow market movements. Human traders apply a personal way of listening and using
their intuition, sentiment, and outside conditions to cue them to rapid trading decisions surrounding
live conversations. Accordingly, the absence of economic language interpretation and the inability to
make decisions in real time is a major difference that keeps the application of AI systems limited.

Natural Language Processing (NLP) models like FinBERT have demonstrated that financial sentiment
can provide short-term predictive signals, but the models are typically static classifiers. They encode
text into discrete sentiment scores or trade labels, operating in a supervised learning paradigm with no
real-time responsiveness or capacity for adaptation. Reinforcement Learning (RL), by contrast, offers
an attractive framework for constructing decision-making agents based on evolving inputs, facilitating

Stanford CS224R 2025 Final Report



the dynamic revision of strategies as new information arrives. Yet most existing RL applications in
finance—e.g., FinRL or Deep RL for High-Frequency Trading (HFT)—revolve around structured
numerical features and ignore the rich, imprecise, and context-dependent signals embedded in natural
language.

In this paper, we introduce a novel reinforcement learning agent that reads financial discus-
sion—sentence by sentence—and learns to trade in real time by synthesizing linguistic cues with
high-frequency market data. The agent lies at the intersection of NLP and financial decision-making,
accepting as input raw earnings call transcripts paired with second-by-second stock price data to
decide whether to Buy, Hold, or Sell after each sentence. Unlike previous work, our system does
not seek to reduce language to a simple sentiment score but strives to learn direct mappings from
discourse to profitable trading activity.

There are three primary technical contributions of this work. First, we offer a synchronized dataset
of earnings calls and second-by-second market characteristics, which allow for precise alignment
for speaking narrative to market context. Second, we create a transformer-embedding-based RL
environment where the sequential decisions are informed by sentence-level financial language in
conjunction with time-series data. Finally, and most critically, we compare a variety of policy network
architectures - multilayer perceptrons (MLPs), gated recurrent units (GRUs), transformer encoders
with causal attention - on the same FinBERT-based sentence embeddings to assess the importance
of temporal modeling and architectural considerations to trading performance. We compare the RL
agents to performance from a static FinBERT sentiment classifier, and the variability in outcomes
illustrate both the potential and challenges of transformer-based RL agents in financial discourse.

Figure 1: Model pipeline.

Preliminary results reveal that while transformer-based RL agents underperform the static baseline in
average return and Sharpe ratio, certain architectures like Longformer and LongT5 achieve higher
maximum returns, indicating potential for event-driven strategies if training instability is addressed.
We identify policy network architecture and lack of temporal modeling as key limitations, and propose
architectural improvements as future work.

This research represents a first step toward real-time, discourse-aware trading agents that can au-
tonomously interpret financial narratives, offering a new paradigm for financial AI beyond price
charts and engineered signals.

2 Related Work

Several streams of research intersect with this project, but none fully address the problem we propose.
A major reference point is "FinRL: Deep Reinforcement Learning Framework to Automate Trading in
Quantitative Finance" by Liu et al. (2022), which introduced a modular RL framework for algorithmic
trading. FinRL applied deep reinforcement learning algorithms such as DDPG, A2C, and PPO to

2



structured market data, primarily stock prices, technical indicators, and portfolio weights. However,
FinRL does not explore the use of unstructured financial language as input, and its environment
relies heavily on numerical time-series features rather than dynamic economic discourse, leaving a
significant gap between real-world information streams and agent decision-making.

Another highly relevant study is "Deep Reinforcement Learning for Active High Frequency Trading"
by Briola et al. (2021), which focuses on deploying RL agents in the high-frequency trading (HFT)
domain using limit order book (LOB) data. Briola et al. develop an end-to-end RL framework where
agents, trained via Proximal Policy Optimization (PPO), trade Intel Corporation stock based on
microstructure signals. They demonstrate that even in highly noisy, non-stationary environments,
DRL agents can exploit local patterns to devise profitable strategies, aided by selective training during
periods of significant price movement and hyperparameter tuning via Bayesian optimization.

While the Briola et al. study represents a strong example of real-world RL application in finance,
its limitations further highlight the novelty of our proposed project. Their agents exclusively utilize
structured LOB data (e.g., volumes, spreads, mark-to-market values) and operate at extremely high
frequencies on microsecond-scale data. In contrast, our agent focuses on real-time processing of
economic communications (including earnings calls, policy announcements, and macroeconomic
reports), analyzing each line of discourse as it becomes available, and immediately updating buy,
sell, or hold actions based on the evolving information. While we share challenges such as sparse
rewards and sample inefficiency, our environment introduces unique complexities arising from natural
language understanding, sequential decision-making, and interpreting delayed market reactions from
human-driven narratives.

Adjacent work in the NLP-finance space, such as sentiment models like FinBERT, demonstrates that
financial text sentiment can predict short-term stock movements. However, these approaches largely
operate within supervised learning paradigms (classification or regression) rather than reinforcement
learning. Moreover, they compress nuanced financial language into coarse sentiment labels, thereby
abstracting away the fine-grained strategic cues—such as uncertainty, evasiveness, or emphasis—that
human traders carefully interpret.

In summary, while FinRL by Liu et al. and the HFT DRL framework by Briola et al. illustrate the
potential of reinforcement learning in structured, engineered financial environments, significant gaps
remain. No existing work demonstrates an RL agent capable of incrementally listening to full, messy,
diverse financial conversations, including earnings calls, rate cut announcements, unemployment
reports, and more, processing information line-by-line in real time, and continuously updating
trading actions. Our work aims to fill this gap by pioneering an RL system capable of discourse-
driven, immediate financial decision-making, thereby advancing reinforcement learning into an
underexplored but practically vital frontier.

3 Method

3.1 Data Collection and Preprocessing

We developed a new dataset from public financial audio transcripts and corresponding market price
data from Databento. Audio files in this dataset were extracted from earnings calls and other financial
announcements, and processed in batches through a custom transcribing pipeline. The audio files
were first transcribed into text segments using an automated speech recognition system. The text
segments are then cleaned, formatted, and timestamp-aligned for downstream analysis. We chose to
format all transcript data in TSV format to avoid any concerns with using quotes in a CSV format.
Each transcript segment was merged with second-level prices of the corresponding stock (open, high,
low, close, volume) using the transcribed timestamp alignment. Special care was taken to ensure
differences in time zones and transcribed and market data correspond accurately. The datasets were
then further split into train and test datasets - using approximately 80% of the data to train and 20%
to evaluate.

3.2 Feature Engineering

Each datapoint was composed of a transcript segment, paired with corresponding market features.
Text segments had been encoded with transformer based models (FinBERT, Longformer, LongT5),
resulting in dense vector embeddings. These were concatenated with the normalized market charac-

3



teristics including price, volume, position, and account balance, creating the observation space for
the trading agent.

Figure 2: Transformer architecture.

3.3 Reinforcement Learning Environment

We implemented a custom OpenAI Gym-compatible environment to mimic trading using transcript
and market data. At each time step, the agent viewed the encoded transcript data and market features
and selected one of three discrete actions: buy, sell, or hold. The environment updated the positions,
balances, and computed rewards based on realized and unrealized profit and loss, along with position
management. Episodes were terminated upon reaching the end of the data file.

3.4 Reward Function

The reward function was designed to not only reward profitable trading actions, but also to penalize
poor decisions and excessive inactivity. For buy actions, the agent received a reward proportional
to the price change after they performed the buy action (amplified for correct buy actions), for sell
actions they received a negative reward proportional to the subsequent price action (amplified for
correct sell action), and for hold actions they received zero reward but a small negative reward when
holding without any open position. Additional rewards or penalties were considered based on the
agent’s current position. When the agent was holding, whether long or short, the agent received a
positive reward if the price moved in favour (or against if a short position), and negative reward when
price did not require the agent to change. The reward at each step can be summarized as: for a buy,
rt = 2 · ∆pt; for a sell, rt = −2 · ∆pt; and for hold, rt = 0, where ∆pt is the normalized price
change, with further position-based adjustments and inactivity penalties included.

3.5 Policy Architectures

We assessed how various policy architectures would affect the agent’s performance, specifically
training and testing three types of policies: an MLP (multilayer perceptron) policy that processed the
concatenated text and market observations without any explicit sequence treatment; a GRU (Gated
Recurrent Unit) policy that applied GRU layers to model the observation sequence, followed by
MLP layers for action selection; and a transformer-based policy which used a transformer encoder
with a causal attention mechanism, providing the agent with the capability to model long-range
dependencies in the observation sequence. All policies produced logits for three possible actions, and
we employed a separate value function head for advantage estimation.

4



Figure 3: Policy architecture.

3.6 Training Procedure

Agents were trained in a PPO-like loop. Experience was collected in parallel using vectorized
wrappers (DummyVecEnv or SubprocVecEnv, depending on platform), where the agent collects
experience in all of the environments simultaneously. In each update, a fixed number of steps were
collected from all the environments, and a policy was updated using the collected batch. Training
was tracked using a progress bar as well as details of rewards and episodic statistics.

3.7 Baseline and Evaluation

As a baseline, we ran a FinBERT-based sentiment trading strategy that used sentiment predictions to
dictate trading actions. After integrating the RL agents, we would run both the baseline and the RL
agents against the held-out test set. The performance measures we used were total return, Sharpe
ratio, and maximum drawdown, with the results for the agents generated across all the test files, and
summary statistics and boxplots produced for comparing performance.

3.8 Robustness and Error Handling

During the development process extensive error handling and logging were put in place for robustness.
Input shape mismatch, data alignment errors, and environment stepping errors were methodically
handled, in addition, we created a standalone testing script to assess the saved models and guarantee
reproducibility of results.

4 Experimental Setup

4.1 Dataset and Environment

We kept our dataset for experiments and final training/testing consistent. To reiterate, the dataset
consisted of 80 earnings calls (4 calls for each of 20 tech companies in the S&P 500). Each call was
processed into a sequence of timestamped sentences aligned with second-by-second market data.
These episodes were used as individual trajectories in the RL environment, mimicking real-time agent
interactions with financial narratives and markets. Each trajectory followed this pattern: The agent
reads a sentence and observes current market conditions.

1. It selects an action (Buy, Hold, or Sell).

2. The environment advances by one sentence and updates the price.

3. A reward is calculated based on immediate and short-term price movement following the
action.

4. This design forces the agent to learn policies that respond dynamically to unfolding narra-
tives, simulating the pressure and constraints of live trading scenarios.

This design forces the agent to learn policies that respond dynamically to unfolding narratives,
simulating the pressure and constraints of live trading scenarios.

5



Figure 4: Transcript data.

Figure 5: Price data.

4.2 Model Evaluation

We trained and evaluated separate agents using each of the four transformer embeddings (BERT,
FinBERT, Longformer, LongT5). When deciding which transformer embedding to utilize for the
final agent, we only used an MLP (multi-layer perceptron) as our Policy architecture. The results
from these initial tests were then used to determine which transformer architecture to proceed with
for the embedding step. Once the embedding transformer was decided upon, we experimented with
three policy architectures: the MLP, GRU (Gated Recurrent Units), and a Transformer with causal
attention.

To assess performance, we used standard financial metrics:

• Average Return: Net percentage gain/loss over a call.

• Sharpe Ratio: Return-to-volatility ratio, indicating risk-adjusted performance.

• Maximum Drawdown: Largest observed loss from peak to trough.

• Minimum and Maximum Return: Extremes of individual episodic performance.

5 Results

Our study systematically evaluated the effectiveness of reinforcement learning (RL) agents that
integrate financial discourse and high-frequency market data for real-time trading. We conducted two
main lines of comparison: (1) the impact of different transformer-based sentence embeddings (BERT,
FinBERT, Longformer, LongT5) on RL agent performance, and (2) the effect of policy network
architecture (MLP, GRU, transformer with causal attention) when using FinBERT embeddings. All
RL agents were benchmarked against a static FinBERT sentiment classifier baseline, which maps
sentence-level sentiment to fixed trade actions. The evaluation was performed on a held-out set of
earnings call transcripts, each synchronized with second-by-second stock price data, to simulate a
realistic, event-driven trading environment. Performance was assessed using average return, Sharpe
ratio, and maximum drawdown, which together capture both profitability and risk.

5.1 Quantitative Evaluation

5.1.1 Transformer Embedding Comparison

Figure 6 provides the summary statistics of RL agents trained with different transformer embeddings,
alongside the static FinBERT baseline. The static FinBERT classifier outperformed all others on
average return (0.27%) and minimum average drawdown (-0.39%), with a Sharpe ratio of -0.39. This
result is a demonstration of the strength of sentiment-based heuristics in financial text, especially
when the RL agent is not yet good enough to maximize the given information. Out of RL agents, the
FinBERT embedding performed the most reliably, with a mean return of -0.01%, mean drawdown of

6



Figure 6: Table of transformer embedding comparison results.

-0.54%, and minimum return of -0.48%. However, its Sharpe ratio of -0.20 was still not up to the
baseline, which implied that the RL agent was not able to generate risk-adjusted returns reliably.

Each of the BERT, Longformer, and LongT5 embeddings produced lower average returns (-0.9%,
-0.75%, and -0.89%, respectively) and greater average drawdowns (BERT: -3.25%, Longformer:
-3.02%, LongT5: -3.29%). Longformer and LongT5 produced maximum returns of 4.62% and 4.6%,
respectively, and this indicates that those models that are capable of modeling longer-range text
dependencies would be more apt to capture event-based or rare market opportunities. Rather, these
did so at the expense of increased risk, as attested to by their poorer minimum returns (Longformer:
-4.28%, LongT5: -5.34%) and greater drawdowns. The BERT agent likewise exhibited extreme
volatility, with a peak return of 3.96% but a low of -5.29%. These indicate that although huge
transformer architecture can at times succeed in detecting big movement in the market, it adds to the
volatility and the risk considerably more.

Figure 7: Boxplot of transformer embedding comparison results.

Figure 7 plots the boxplot of the return distribution for each transformer embedding and baseline,
revealing larger interquartile ranges and greater extremes in the RL agents than in the static baseline,
once again demonstrating the challenges faced in learning stable trading policies from language and
price information.

5.1.2 Policy Architecture Comparison

Figure 8: Table of policy architecture comparison results.

Figure 8 shows the performance for different policy architectures (MLP, GRU, causal attention
transformer), with all of them using FinBERT embeddings. The MLP policy, which acts on each state
in isolation without explicit temporal modeling, achieved a mean return of -0.01%, mean drawdown
of -0.54%, and worst return of -0.48%. This architecture experienced the most consistent of all
RL agents’ performance, with low risk but limited upside (best return: 1.65%). The GRU policy,

7



involving sequential modeling of the discourse and market condition, possessed a higher maximum
return (4.6%) but also a lower minimum return (-5.34%) and higher average drawdown (-3.29%). Its
average return (-0.89%) and Sharpe ratio (-0.22) indicate that while the GRU might use temporal
dependencies at times to exploit large rewards, it is more likely also to experience large losses and
volatility.

The causal attention transformer policy never made any valid trades, and all of the metrics became
zero. This suggests either that the agent was not being trained optimally or that there is a fundamental
limit within the present training setup, and indicates towards the susceptibility of transformer-based
RL agents towards training instability and hyperparameters.

Figure 9: Boxplot of policy architecture comparison.

Figure 9 displays the boxplot of the returns for each policy architecture. The GRU policy has the
largest spread, to be expected of its higher reward and risk nature, while the MLP policy is very
compact around zero. The transformer policy is 0, reflecting its lack of trades.

5.2 Qualitative Analysis

Looking deeper into individual trajectories and episodes provided further insights into the relative
effectiveness of each approach. The RL Agents running on GRU and Transformer policies, which
both have temporal modelling, had instances where they reacted to sudden changes in the sentiment
of the discourse, and were able to make profitable trades in response to the earnings call. In some
earnings calls, management gave unexpected guidance or addressed market rumors. In these cases,
the GRU agent anticipated the price jump and executed profitable trades, which led to the highest
observed returns. However, these successes were not consistent, and the same agents tended to
overreact to ambiguous language, which led to negative returns and high drawdowns.

On the other hand, the MLP policy tended to be less reactive, resulting in a smoother trading pattern,
due to its lack of memory of previous states. This approach often missed brief opportunities but also
avoided the most significant losses. As a result, the MLP was more stable, but also less profitable.
The static FinBERT baseline, while robust in average performance, lacked the flexibility to adapt to
evolving narrative context. It sometimes failed to capitalize on nuanced or ambiguous language that
preceded significant price movements, but its conservative strategy protected it from large losses.

Case studies of individual earnings calls provided evidence that transformer-style RL agents could, in
some cases, potentially forecast substantial price rises in a market after observing meaningful cues in
the narrative, such as forward-looking statements, or indications of changing sentiment. Despite these
possibilities, their performance was highly variable, and of course, could be impacted by elements
of instability in training, sparse rewards, and hyperparameters. Specifically, the transformer policy
with causal attention learned no useful trading policy in this scenario, suggesting more research is
warranted on minimizing their training instability and exploiting the temporal modeling capabilities
and the long-range dependencies mechanisms of the model.

In conclusion, it appears that while current RL agents do not consistently beat static sentiment-based
trading strategies, we can see that incorporating sophisticated temporal modeling and discourse-aware
architectures will likely advance our ability to trade using real-time language processing. The findings

8



show that one: both the language model and the design of the policy network make a difference, and
two: the need for future work focused on reward shaping, maximizing stable training, and recognition
of rare but significant market events.

6 Discussion

Our findings indicate both the potential and the limitations of reinforcement learning agents using
financial language and high frequency market data in real-time trading. While the static FinBERT
sentiment classifier is the simplest model in our analysis, it is still a strong baseline and produces the
highest average return and lowest drawdown of any model. In the current market environment and
with the available data, this finding suggests sentiment heuristics still capture much of the actionable
information contained in earnings call transcripts.

While the RL agents and their transformer embedding methods, in particular Longformer and LongT5,
managed to capture occasional rare, high-magnitude market events (explained by its higher max
returns), the volatility and risk were markedly higher with larger max drawdowns, and negative min
returns. This trend can be seen as evidence that despite the notion that transformer-based RL agents
can possibly leverage opportunities in a narrative driven market, they may overfit, have greater risk of
reward sparsity, and training instability. The GRU policy, which does incorporate temporal modeling,
managed to react to sudden shifts in discourse and market environments, sometimes executing very
profitable trades, but this high return and volatility came at a cost of even higher overall risk and
reward distribution, summarized in its overall wide return distribution.

The MLP policy, which did not model temporal aspects of trading explicitly, exhibited the most
stable, but least agile trading behavior. All performance clustered near zero; while not taking large
losses, it did not capitalize on large opportunities either. The transformer policy with causal attention
(the implementation tested) was unable to learn a significant trading strategy and barely traded. This
again draws attention to the difficulties in training deep RL agents in sparse reward settings with
significant noise and complex, context-dependent signals.

Qualitative analysis also suggested, in accordance with temporal modeling principles, RL agents were
more readily triggered by event-based language, e.g., forward-looking statements or sharp sentiment
shifts. Many hyper-parameters associated with temporal modeling were idiosyncratic, i.e., sensitive
to factors such as choosing a reward to use, constructing the reward itself, and inferencing uncertainty
with financially ambiguous language. The static baseline was robust, but it had no ability to change
with evolving narrative context; because of that, it may have lost out on interpretation cues that led to
significant information on price movement.

7 Conclusion

This work gives an overall analysis of reinforcement learning agents that employ both financial
language and high-frequency market data for real-time trading. We validate the potential for agents
to exploit narrative-driven market opportunities by utilizing transformer-based sentence embeddings
and policy network architecture, but must acknowledge the reliance of RL agents on instability in
training and sparsity of rewards. The static FinBERT sentiment classifier remains a strong reference
point for average results, but RL agents with temporal modeling achieve higher maximum returns
than sentiment classifiers, indicating that once stability and the reward function are satisfactory there
is likely greater potential for real-time, language-informed trading.

It is clear our work considers both the selection of language models and design of policy networks
are important variables when building financial AI systems capable of interpreting and implementing
actions based on economic language. While current RL agents are not yet consistently superior
to static sentiment-based strategies, advancements in temporal modeling and knowledge-informed
policy architecture offers hope to realize the next generation of financial trading systems. This
work establishes the grounds for real-time, language-informed trading agents, and is one of the
first instances to support a new brand of financial AI that relocates its ambition of complexity from
price-charts and engineered signals to the entirety of economic language complexity.

9



8 Team Contributions

• Sarang Goel – Data and Evaluation Lead: Collect/clean historical transcripts and matching
price data, maintain the replay buffer, implement back-testing and baseline benchmarks, and
generate performance reports on returns.

• Chirag Maheshwari – RL and Trading Strategy: Develop the trading sandbox, define the
reward formula, implement the RL algorithm, and perform light hyper-parameter tuning to
improve model performance.

• Ekansh Mittal – Language Engineering: Curate the chosen embedding models and
build the line-by-line text pipeline so earnings calls and policy remarks flow into usable
embeddings for the agent.

Note: All work will be done collaboratively, with overlap between team members; this defines each
team member’s primary focus.

Changes from Proposal Further policy architecture analysis was done.

References
Antonio Briola, Jeremy Turiel, Riccardo Marcaccioli, Alvaro Cauderan, and Tomaso Aste. 2021.

Deep reinforcement learning for active high frequency trading. arXiv preprint arXiv:2101.07107
(2021).

Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang. 2022. FinRL: deep
reinforcement learning framework to automate trading in quantitative finance. In Proceedings
of the Second ACM International Conference on AI in Finance (Virtual Event) (ICAIF ’21).
Association for Computing Machinery, New York, NY, USA, Article 1, 9 pages. https://doi.
org/10.1145/3490354.3494366

A Implementation Details

Github: https://github.com/Ekansh-Mittal1/CS224R-Project

10

https://doi.org/10.1145/3490354.3494366
https://doi.org/10.1145/3490354.3494366

	Introduction
	Related Work
	Method
	Data Collection and Preprocessing
	Feature Engineering
	Reinforcement Learning Environment
	Reward Function
	Policy Architectures
	Training Procedure
	Baseline and Evaluation
	Robustness and Error Handling

	Experimental Setup
	Dataset and Environment
	Model Evaluation

	Results
	Quantitative Evaluation
	Transformer Embedding Comparison
	Policy Architecture Comparison

	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions
	Implementation Details

